3.753 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2} \sqrt{f+g x}} \, dx\)

Optimal. Leaf size=304 \[ \frac{5 \sqrt{f+g x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}{8 g^3 \sqrt{d+e x}}-\frac{5 \sqrt{f+g x} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}{12 g^2 (d+e x)^{3/2}}-\frac{5 \sqrt{d+e x} \sqrt{a e+c d x} (c d f-a e g)^3 \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{8 \sqrt{c} \sqrt{d} g^{7/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac{\sqrt{f+g x} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}} \]

[Out]

(5*(c*d*f - a*e*g)^2*Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*g^3*Sqrt[d + e*x]) - (5*(c*
d*f - a*e*g)*Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(12*g^2*(d + e*x)^(3/2)) + (Sqrt[f +
 g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(3*g*(d + e*x)^(5/2)) - (5*(c*d*f - a*e*g)^3*Sqrt[a*e + c
*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(8*Sqrt[c]*Sqrt[d]*g
^(7/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.487025, antiderivative size = 304, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 48, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.104, Rules used = {864, 891, 63, 217, 206} \[ \frac{5 \sqrt{f+g x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}{8 g^3 \sqrt{d+e x}}-\frac{5 \sqrt{f+g x} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}{12 g^2 (d+e x)^{3/2}}-\frac{5 \sqrt{d+e x} \sqrt{a e+c d x} (c d f-a e g)^3 \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{8 \sqrt{c} \sqrt{d} g^{7/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac{\sqrt{f+g x} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*Sqrt[f + g*x]),x]

[Out]

(5*(c*d*f - a*e*g)^2*Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*g^3*Sqrt[d + e*x]) - (5*(c*
d*f - a*e*g)*Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(12*g^2*(d + e*x)^(3/2)) + (Sqrt[f +
 g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(3*g*(d + e*x)^(5/2)) - (5*(c*d*f - a*e*g)^3*Sqrt[a*e + c
*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(8*Sqrt[c]*Sqrt[d]*g
^(7/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 864

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(m - n - 1)), x] - Dist[(m*(c*e*f + c*d*g - b*e*g
))/(e^2*g*(m - n - 1)), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c,
 d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ
[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2,
 0]) && RationalQ[n]

Rule 891

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} \sqrt{f+g x}} \, dx &=\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}-\frac{(5 (c d f-a e g)) \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} \sqrt{f+g x}} \, dx}{6 g}\\ &=-\frac{5 (c d f-a e g) \sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2}}+\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}+\frac{\left (5 (c d f-a e g)^2\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x} \sqrt{f+g x}} \, dx}{8 g^2}\\ &=\frac{5 (c d f-a e g)^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x}}-\frac{5 (c d f-a e g) \sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2}}+\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}-\frac{\left (5 (c d f-a e g)^3\right ) \int \frac{\sqrt{d+e x}}{\sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 g^3}\\ &=\frac{5 (c d f-a e g)^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x}}-\frac{5 (c d f-a e g) \sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2}}+\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}-\frac{\left (5 (c d f-a e g)^3 \sqrt{a e+c d x} \sqrt{d+e x}\right ) \int \frac{1}{\sqrt{a e+c d x} \sqrt{f+g x}} \, dx}{16 g^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=\frac{5 (c d f-a e g)^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x}}-\frac{5 (c d f-a e g) \sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2}}+\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}-\frac{\left (5 (c d f-a e g)^3 \sqrt{a e+c d x} \sqrt{d+e x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{f-\frac{a e g}{c d}+\frac{g x^2}{c d}}} \, dx,x,\sqrt{a e+c d x}\right )}{8 c d g^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=\frac{5 (c d f-a e g)^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x}}-\frac{5 (c d f-a e g) \sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2}}+\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}-\frac{\left (5 (c d f-a e g)^3 \sqrt{a e+c d x} \sqrt{d+e x}\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{g x^2}{c d}} \, dx,x,\frac{\sqrt{a e+c d x}}{\sqrt{f+g x}}\right )}{8 c d g^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=\frac{5 (c d f-a e g)^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x}}-\frac{5 (c d f-a e g) \sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2}}+\frac{\sqrt{f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2}}-\frac{5 (c d f-a e g)^3 \sqrt{a e+c d x} \sqrt{d+e x} \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{8 \sqrt{c} \sqrt{d} g^{7/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 1.04351, size = 229, normalized size = 0.75 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\sqrt{g} (f+g x) \left (33 a^2 e^2 g^2+2 a c d e g (13 g x-20 f)+c^2 d^2 \left (15 f^2-10 f g x+8 g^2 x^2\right )\right )-\frac{15 \sqrt{c} \sqrt{d} (c d f-a e g)^{7/2} \sqrt{\frac{c d (f+g x)}{c d f-a e g}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{g} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d f-a e g}}\right )}{(c d)^{3/2} \sqrt{a e+c d x}}\right )}{24 g^{7/2} \sqrt{d+e x} \sqrt{f+g x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*Sqrt[f + g*x]),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[g]*(f + g*x)*(33*a^2*e^2*g^2 + 2*a*c*d*e*g*(-20*f + 13*g*x) + c^2*d^2*(15
*f^2 - 10*f*g*x + 8*g^2*x^2)) - (15*Sqrt[c]*Sqrt[d]*(c*d*f - a*e*g)^(7/2)*Sqrt[(c*d*(f + g*x))/(c*d*f - a*e*g)
]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d*f - a*e*g])])/((c*d)^(3/2)*Sqrt[a*e
+ c*d*x])))/(24*g^(7/2)*Sqrt[d + e*x]*Sqrt[f + g*x])

________________________________________________________________________________________

Maple [A]  time = 0.368, size = 508, normalized size = 1.7 \begin{align*}{\frac{1}{48\,{g}^{3}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}\sqrt{gx+f} \left ( 15\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){a}^{3}{e}^{3}{g}^{3}-45\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){a}^{2}cd{e}^{2}f{g}^{2}+45\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ) a{c}^{2}{d}^{2}e{f}^{2}g-15\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){c}^{3}{d}^{3}{f}^{3}+16\,{x}^{2}{c}^{2}{d}^{2}{g}^{2}\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}+52\,\sqrt{cdg}\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }xacde{g}^{2}-20\,\sqrt{cdg}\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }x{c}^{2}{d}^{2}fg+66\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}{a}^{2}{e}^{2}{g}^{2}-80\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}acdefg+30\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}{c}^{2}{d}^{2}{f}^{2} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }}}{\frac{1}{\sqrt{cdg}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^(1/2),x)

[Out]

1/48*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(g*x+f)^(1/2)*(15*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g
*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a^3*e^3*g^3-45*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f)
)^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a^2*c*d*e^2*f*g^2+45*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f
))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a*c^2*d^2*e*f^2*g-15*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+
f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*c^3*d^3*f^3+16*x^2*c^2*d^2*g^2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/
2)+52*(c*d*g)^(1/2)*((c*d*x+a*e)*(g*x+f))^(1/2)*x*a*c*d*e*g^2-20*(c*d*g)^(1/2)*((c*d*x+a*e)*(g*x+f))^(1/2)*x*c
^2*d^2*f*g+66*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*a^2*e^2*g^2-80*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/
2)*a*c*d*e*f*g+30*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*c^2*d^2*f^2)/(e*x+d)^(1/2)/g^3/((c*d*x+a*e)*(g*x+f
))^(1/2)/(c*d*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}{{\left (e x + d\right )}^{\frac{5}{2}} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^(1/2),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*sqrt(g*x + f)), x)

________________________________________________________________________________________

Fricas [A]  time = 8.05044, size = 1793, normalized size = 5.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^(1/2),x, algorithm="fricas")

[Out]

[1/96*(4*(8*c^3*d^3*g^3*x^2 + 15*c^3*d^3*f^2*g - 40*a*c^2*d^2*e*f*g^2 + 33*a^2*c*d*e^2*g^3 - 2*(5*c^3*d^3*f*g^
2 - 13*a*c^2*d^2*e*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) - 15*(c^3*d
^4*f^3 - 3*a*c^2*d^3*e*f^2*g + 3*a^2*c*d^2*e^2*f*g^2 - a^3*d*e^3*g^3 + (c^3*d^3*e*f^3 - 3*a*c^2*d^2*e^2*f^2*g
+ 3*a^2*c*d*e^3*f*g^2 - a^3*e^4*g^3)*x)*sqrt(c*d*g)*log(-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g
+ a^2*d*e^2*g^2 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*g*x + c*d*f + a*e*g)*sqrt(c*d*g)*sqrt(e
*x + d)*sqrt(g*x + f) + 8*(c^2*d^2*e*f*g + (c^2*d^3 + a*c*d*e^2)*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*
a*c*d*e^2)*f*g + (8*a*c*d^2*e + a^2*e^3)*g^2)*x)/(e*x + d)))/(c*d*e*g^4*x + c*d^2*g^4), 1/48*(2*(8*c^3*d^3*g^3
*x^2 + 15*c^3*d^3*f^2*g - 40*a*c^2*d^2*e*f*g^2 + 33*a^2*c*d*e^2*g^3 - 2*(5*c^3*d^3*f*g^2 - 13*a*c^2*d^2*e*g^3)
*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) + 15*(c^3*d^4*f^3 - 3*a*c^2*d^3*e*
f^2*g + 3*a^2*c*d^2*e^2*f*g^2 - a^3*d*e^3*g^3 + (c^3*d^3*e*f^3 - 3*a*c^2*d^2*e^2*f^2*g + 3*a^2*c*d*e^3*f*g^2 -
 a^3*e^4*g^3)*x)*sqrt(-c*d*g)*arctan(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*g)*sqrt(e*x + d)*
sqrt(g*x + f)/(2*c*d*e*g*x^2 + c*d^2*f + a*d*e*g + (c*d*e*f + (2*c*d^2 + a*e^2)*g)*x)))/(c*d*e*g^4*x + c*d^2*g
^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2)/(g*x+f)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}{{\left (e x + d\right )}^{\frac{5}{2}} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^(1/2),x, algorithm="giac")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*sqrt(g*x + f)), x)